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LElTER TO THE EDITOR 

A method for accurate stability bounds in a small 
denominator problem 
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Fachbereich Mathematik, Freie Universitat Berlin, Arnimallee 2-6, D-1000 Berlin 33, 
Federal Republic of Germany 

Received 5 July 1988 

Abstract. We consider the problem of obtaining realistic lower bounds for the Siegel radius. 
Recent advances of the analysis of Siegel disks allow us to give a very accurate numerical 
algorithm based on rigorous results. 

We find that for non-quadratic polynomial maps the maximal Siegel radius might 
correspond to rotation numbers different from the golden mean. 

Small denominators are the most important difficulty in the study of classical perturba- 
tion theory. One of the basic unsolved problems is to find methods for obtaining 
accurate estimates of the breakdown threshold of the invariant manifolds. These 
invariant manifolds, usually circles or tori, are preserved under small perturbations of 
integrable systems. A rigorous and computationally effective method is not yet avail- 
able. The best rigorous results, due to computer-assisted KAM proofs (Celletti and 
Chierchia 1987, De La Llave and Rana 1986, Liverani et al 1984, Liverani and Turchetti 
1986), give lower bounds which differ from the values resulting from numerical studies 
by less than 10%. 

We report here briefly on a simple numerical algorithm, based on theorems due to 
Herman (1985, 1987a, b), which permits us to compute very accurate estimates for the 
simplest small denominator problem, namely the Siegel centre problem. We refer to 
Marmi (1988b) for more details of the proofs and for some applications to polynomial 
maps of C. 

Suppose that f :  C + C is analytic and has a fixed point at z = 0 with eigenvalue 
A : = f ’ ( O )  = exp(2~riw), so that f(z) = Ax +Z:m2fkzk. Assume that w is irrational and 
verifies a Diophantine condition, i.e. there exist two positive constants y and such 
that for all p ,  q E 2, q f 0, lw - p / q 1 5  yq-”. Then Siegel (1942) proved that there exists 
a unique analytic diffeomorphism a, from a disk D, := { w E C 1 1  w \ <  r }  to a neighbour- 
hood of z = 0, such that Q(0) = 0, W(0) = 1 and 

(f.@.) ( w )  = @ . ( A w )  (1) 
i.e. f is analytically conjugated to its linear part on a neighbourhood a( D,) of its fixed 
point. The maximal open connected neighbourhood U of z = 0 which has this property 
and is invariant under f is called the Siegel singular domain (Siegel disk). It is foliated 
into invariant manifolds analytically equivalent to circles with rotation number w. The 

t On leave of absence from: Dipartimento di Fisica, Universita di Bologna, Via lrnerio 46, 40126 Bologna, 
Italy. 
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Siegel radius rs is the radius of the disk D,= @ - I (  U), i.e. the radius of convergence 
of the power series expansion Xkzl @ k ~ k  of @(w). The coefficients @ k  can be easily 
computed by matching powers in (1): clearly @, = 1 and for k z 2  one has 

where ( A  - A )  is the small denominator and in the sum each kj 3 1. 
Upper bounds to the Siegel radius can be obtained from the knowledge of the 

coefficients @ k ,  applying the Hadamard criterion (see Liverani et al 1984). Moreover, 
by the Bieberbach-de Branges theorem (De Branges 1985), for all k a  1 one has 

l @ k ( r t - l  G k (3) 
and by the area formula for univalent functions (Pommerenke 1975) 

oc 

area ( @ ( D J )  =area ( U )  = 7~ k(@k12rik.  
k=l 

(4) 

The area of the Siegel domain U can be numerically computed from the knowledge 
of the trajectory of a critical point of f (i.e. a point zo where f ' ( z o )  = 0) given by a 
finite number of iterations of the map. In fact, no critical points off can be contained 
in U becausefu is injective. From the classical theory of Fatou and Julia (see Blanchard 
1984) one knows that a U is contained in the closure of the forward orbits { f " ( z o )  I n 2 0) 
of the critical points. Indeed Herman (1985) has proved that, if U has compact closure, 

f l a u  is injective and w is Diophantine, then there is a critical point o f f  on dU. In 
particular he showed that this is the case for mappings of the form 

f(z) =exp(2.rriw)z+zn ( 5 )  
with n 2 2. 

Analytical proofs of the Siegel theorem (De La Llave 1983, Marmi 1988a, Siegel 
1942) give rigorous lower bounds which are unfortunately far from being realistic. 
Computer-assisted proofs (De La Llave and Rana 1986, Liverani et a1 1984, Liverani 
and Turchetti 1986) help to improve these estimates so that lower and upper bounds 
differ by less than 20%. However, in this case a considerable amount of numerical 
work and of computing time is required (about one hour on a VAX 111750 for one 
single estimate (De La Llave and Rana 1986)). 

Much more accurate lower bounds for the Siegel radius can be obtained by applying 
the following remark (Herman 1987a, Marmi 1988a). From (1) one clearly has 
(fJo@)(w)=@(A'w)forall w € D , a n d j 3 0 .  Thusforal l  m a l  

- log I fJ(z) l  =; log (@(A'w)l 
m J = o  1 =o 

1 m - l  1 m - l  

where z = @ ( w ) E  U. Notice that logI@(w)l is harmonic and as @ is an analytic 
diffeomorphism of Drs onto U, with @(O) = 0, it has neither poles nor zeros but w = 0, 
so that ji log I@(r exp(27~iB))J d6  =log r for all r < r s .  Note in addition that w + Aw 
is uniquely ergodic on the circle 1 w (  = r < r s .  Therefore, applying the ergodic theorem, 
one has that for all Z E  U 

1 m - l  

lim - 1 log(f'(z)l= log r. 
m + + o  m 

Taking the radial limit r + rs one also shows that (6) holds when r = rs for almost 
everywhere z E a U with respect to the harmonic measure. 
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When r < rs it is also possible to give a rigorous estimate of the speed of convergence 
in ( 6 ) .  Indeed, if [ aO,  a , ,  a 2 , .  . .] denotes the continued fraction expansion of w,  and 
( P k / q k ) k = O  its partial fractions, then 

( ~ k + 2 ) - 1 q k 2 ~ 1 0 - ~ k / q k ~ ~ a Q ; : l q k 2  

the successive closest recurrences of an orbit are given by fqk(z), and one can show 
that, for all Z E  U, 

where var denotes the variation on I wI = r. 
In a recent survey article (Douady 1987) it has been conjectured that, as numerical 

experiments suggest (Mackay and Percival 1987, Manton and Nauenberg 1983, Widom 
1983), for quadratic mappings the boundary of the Siegel singular domain is a 
quasicircle, i.e. the image of the unit circle under a quasiconformal map. We recall 
that a quasicircle J 4 C is characterised by the fact that there exists a positive constant 
K such that for all z, , z2 E J 

min(diam J ,  , diam J 2 )  d K l z ,  - z21 

where J ,  and J2 are the two arcs of which J\{ z, , z2} consists. For instance, a quasicircle 
may have (non-zero-angle) corners but may not have (zero-angle) cusps. 

Actually Herman has recently proven (Herman 1987b) that, if f(z)= 
exp(2vio)zS. z2 and w is Diophantine with exponent p = 2, then a U  is a quasicircle. 
In this case we can prove that there exists a number x E [0,1[ such that, for all z E a U, 

In fact, x is the norm of the Grunsky operator (Pommerenke 1975) associated with 
the univalent function g(x) = rs/@( r s / x )  defined for 1x1 > 1. 

In table 1 we have reported the estimates of the Siegel radius resulting from the 
application of ( 6 )  to the orbitfqk(z) of the point z = (1 - E ) z ~ ,  where zo= -4 exp(2riw) 

Table 1. Estimates of the Siegel radius for the map f(z) =exp(2r iw)z+z2,  obtained 
applying (6)  to the first qa iterates of z =  (1  -E)z,,, where z0= - iexp(2r iw)  is the critical 
point of& For comparison also the etimates obtained applying Hadamard and Bieberbach- 
de Branges theorems to Oqi and the area theorem are reported. w = (&+ 1)/2. 

q h  

E 

lo- '  

io-' 
1 0 - ~  
1 0 - ~  
0 

Hadamard 
Bieberbach-de Branges 
Area criterion r s s  0.350 

377 

0.316 637 
0.324 704 
0.324 820 
0.324 822 
0.324 822 
0.324 822 

0.332 66 
0.336 96 

610 987 1597 

0.316 642 
0.324 839 
0.324 964 
0.324 966 
0.324 966 
0.324 966 

0.330 06 
0.332 95 

0.316 642 
0.324918 
0.325 057 
0.325 058 
0.325 058 
0.325 058 

0.328 36 
0.330 29 

0.316 642 
0.324 963 
0.325 114 
0.325 116 
0.325 116 
0.325 116 

0.327 25 
0.328 54 
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is the critical point of the quadratic map f(z) = exp(27riw)zS z2 .  The values of E range 
from lo-' to 0, and w is equal to (A+ 1)/2 = [ 1, 1, . . . I .  For comparison upper bounds 
by Hadamard, Bieberbach-de Branges and area theorems are also given. It is clear 
that the application of ( 6 )  gives the best estimates and converges pretty fast. 

For this map we have also computed the Siegel radius from qk = 317 81 1 iterations 
of the critical point zo (corresponding to the term k = 27 of the Fibonacci sequence). 
The result is r z  = 0.325 210 835 69, and an analysis of the numerical stability (the 
round-off error being smaller than and of the speed of convergence of ( 6 ) ,  
suggests that the first six digits should be exact. The computer time needed is approxi- 
mately 5 min on a PC. 

In figure 1 we have plotted log/( I /  q k )  8&' log/f'( z)l -log r Q /  as a function of 
log qk. As one should expect from the error estimate (7) the points lie on a straight 
line; the slope is cz = 0.99. 

O i - - - ?  

1 I 1 I I I I I I I I I 1 

log 4, 
0 2 4 6 8 10 12 

Figure 1. log((l/q,) ZYL~' logjf'(z)/ -log rzl plotted as a function of log q k .  

These and other tests provide a good evidence of the reliability and accuracy of 
( 6 )  for obtaining realistic estimates of the Siegel radius r s .  Therefore we use it in 
Marmi (1988b) in order to study the dependence of rs on the degree n of the maps 
(5) and on the continued fraction of the rotation number w. Table 2 and figure 2 
report some preliminary results. 

It is of some interest to remark that for non-quadratic mappings the maximum 
Siegel radius does not correspond to the golden mean rotation number w = (a+ 1)/2, 
Indeed, if one considers rotation numbers with a constant continued fraction expansion 
w = [ p ,  p ,  . . .I for maps ( 5 )  of degree n 3 3, then rs is not a monotonic function of p .  
This result is not too surprising if one takes into account that in this case the power 
series of @ has the structure @(w)= w&(w"-') ,  i.e. it is a power series in wfl-l. 

Symmetries like the previous one might also appear in the applications of Hamiltonian 
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0 30- 

0 20- 

rs 

0 

0 

Table 2. Estimates of the Siegel radius for the maps f(r) = e x p ( 2 ~ i w ) z  + z", where w = 
[p ,p  , . . .  ]=$[(p2+4)+p] ,  p = l ,  . . . ,  10 and n = 2  ,..., 5. The first q k ( p )  iterates of the 
critical point, with qh(p)"- IOOOO have been used. The first four digits are significant. 

n 

i 
- ' 
- i  1 

i 

! 
I 

, 
10-1 

\ 
! 

I 

I 

r 

I I I I I J I I I I I I I ~ I ~ I ' I  

0 2  0.4 06 08 1 

P 2  3 4 5 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.325 17 
0.324 09 
0.320 61 
0.314 99 
0.307 82 
0.299 64 
0.290 96 
0.282 00 
0.273 00 
0.264 14 

0.437 79 
0.426 18 
0.438 59 
0.419 50 
0.440 32 
0.413 76 
0.438 60 
0.408 77 
0.434 19 
0.403 72 

0.498 96 
0.509 02 
0.469 79 
0.518 32 
0.521 06 
0.465 90 
0.522 68 
0.522 80 
0.467 62 
0.521 73 

0.560 33 
0.559 76 
0.570 72 
0.494 61 
0.573 25 
0.570 05 
0.576 21 
0.501 71 
0.576 44 
0.569 49 

perturbation theory to some special systems. We expect that, in these cases, similar 
results are possible and therefore one should try to obtain realistic bounds in small 
denominator problems for 'classes' of frequencies (like the 'noble' numbers (Percival 
1982)) or, better, for positive measure sets. 

Yoccoz (1985) has recently proved a remarkable result in this direction: for the 
quadratic map the set Y c_ S' of rotation numbers w which have a Siegel radius r s ( w )  3 a 
has positive Lebesgue measure. In figure 2 we exhibit the Siegel radius rs at 7000 
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uniformly distributed random rotation numbers o E [0, 11. The self-similarity of the 
figure is evident; notice also the analogy with figure 2 of Percival’s study of the 
semistandard map with ‘noble’ frequencies. From our data we can also obtain an 
estimate of the measure of the set Y of Yoccoz’s theorem; we find meas Y 3 0.74. 

To conclude we want to stress that it would be very interesting to extend Yoccoz’s 
result to non-quadratic complex mappings, especially to area-preserving or Hamiltonian 
systems. Some preliminary numerical results on the polynomial maps ( 5 )  indicate that 
this should be possible. 

I am very grateful to Adrien Douady and Christian Pommerenke for stimulating 
discussions and for drawing my attention to Herman’s work. I am indebted to Monica 
Levi Malavasi for her help in part of the numerical work, to Giorgio Turchetti for his 
constant encouragement, to Volker Enss, Ruedi Seiler and Robert Schrader for their 
kind hospitality in Berlin, where most of this work was prepared, and to the Deutsche 
Forschungsgemeinschaft (DFG), and the INFN-Sezione di Bologna, for financial 
support. 
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